Bounds on the Size and Asymptotic Rate of Subblock-Constrained Codes
نویسندگان
چکیده
The study of subblock-constrained codes has recently gained attention due to their application in diverse fields. We present bounds on the size and asymptotic rate for two classes of subblock-constrained codes. The first class is binary constant subblock-composition codes (CSCCs), where each codeword is partitioned into equal sized subblocks, and every subblock has the same fixed weight. The second class is binary subblock energy-constrained codes (SECCs), where the weight of every subblock exceeds a given threshold. We present novel upper and lower bounds on the code sizes and asymptotic rates for binary CSCCs and SECCs. For a fixed subblock length and small relative distance, we show that the asymptotic rate for CSCCs (resp. SECCs) is strictly lower than the corresponding rate for constant weight codes (CWCs) (resp. heavy weight codes (HWCs)). Further, for codes with high weight and low relative distance, we show that the asymptotic rates for CSCCs is strictly lower than that of SECCs, which contrasts that the asymptotic rate for CWCs is equal to that of HWCs. We also provide a correction to an earlier result by Chee et al. (2014) on the asymptotic CSCC rate. Additionally, we present several numerical examples comparing the rates for CSCCs and SECCs with those for constant weight codes and heavy weight codes.
منابع مشابه
Superlinearly convergent exact penalty projected structured Hessian updating schemes for constrained nonlinear least squares: asymptotic analysis
We present a structured algorithm for solving constrained nonlinear least squares problems, and establish its local two-step Q-superlinear convergence. The approach is based on an adaptive structured scheme due to Mahdavi-Amiri and Bartels of the exact penalty method of Coleman and Conn for nonlinearly constrained optimization problems. The structured adaptation also makes use of the ideas of N...
متن کاملCoding Bounds for Multiple Phased-Burst Correction and Single Burst Correction Codes
In this paper, two upper bounds on the achievable code rate of linear block codes for multiple phased-burst correction (MPBC) are presented. One bound is constrained to a maximum correctable cyclic burst length within every subblock, or equivalently a constraint on the minimum error free length or gap within every phased-burst. This bound, when reduced to the special case of a bound for single ...
متن کاملAn improvement of the asymptotic Elias bound for non-binary codes
For non-binary codes the Elias bound is a good upper bound for the asymptotic information rate at low relative minimum distance, where as the Plotkin bound is better at high relative minimum distance. In this work, we obtain a hybrid of these bounds which improves both. This in turn is based on the anticode bound which is a hybrid of the Hamming and Singleton bounds and improves both bounds. Th...
متن کاملIntroduction to Coding Theory CMU : Spring 2010 Notes 4 : Elementary bounds on codes
We now turn to limitations of codes, in the form upper bounds on the rate of codes as a function of their relative distance. We will typically give concrete bounds on the size of codes, and then infer as corollaries the asymptotic statement for code families relating rate and relative distance. All the bounds apply for general codes and they do not take advantage of linearity. However, for the ...
متن کاملOptimal Solution in a Constrained Distribution System
We develop a method to obtain an optimal solution for a constrained distribution system with several items and multi-retailers. The objective is to determine the procurement frequency as well as the joint shipment interval for each retailer in order to minimize the total costs. The proposed method is applicable to both nested and non-nested policies and ends up with an optimal solution. To solv...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1701.04954 شماره
صفحات -
تاریخ انتشار 2017